A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics
نویسندگان
چکیده
We introduce and analyze a discontinuous Galerkin method for the numerical discretization of a stationary incompressible magnetohydrodynamics model problem. The fluid unknowns are discretized with inf-sup stable discontinuous P3 k −Pk−1 elements whereas the magnetic part of the equations is approximated by discontinuous P3 k−Pk+1 elements. We carry out a complete a-priori error analysis of the method and prove that the energy norm error is optimally convergent in the mesh size. These results are verified in a series of numerical experiments.
منابع مشابه
A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics
We introduce and analyze a mixed finite element method for the numerical discretization of a stationary incompressible magnetohydrodynamics problem, in two and three dimensions. The velocity field is discretized using divergence-conforming Brezzi-Douglas-Marini (BDM) elements and the magnetic field is approximated by curl-conforming Nédélec elements. The H1-continuity of the velocity field is e...
متن کاملExistence and Stability for the 3D Linearized Constant-Coefficient Incompressible Current-Vortex Sheets
We consider the free boundary problem for current-vortex sheets in ideal incompressible magnetohydrodynamics. The problem of current-vortex sheets arises naturally, for instance, in geophysics and astrophysics. We prove the existence of a unique solution to the constant-coefficient linearized problem and an a priori estimate with no loss of derivatives. This is a preliminary result to the study...
متن کاملStability of an impulsively accelerated density interface in magnetohydrodynamics.
In the framework of ideal incompressible magnetohydrodynamics, we examine the stability of an impulsively accelerated, sinusoidally perturbed density interface in the presence of a magnetic field that is parallel to the acceleration. This is accomplished by analytically solving the linearized initial value problem, which is a model for the Richtmyer-Meshkov instability. We find that the initial...
متن کاملDevelopment length of laminar magnetohydrodynamics pipe flows
In this article, a laminar magnetohydrodynamics (MHD) developing flow of an incompressible electrically conducting fluid subjected to an external magnetic field is considered. The aim of the study is to propose a correlation for computing the development length of the laminar MHD developing flow in a pipe. A numerical approach is considered to solve the problem. In the first step, the numerical...
متن کاملUnconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media
In this paper, we study the unconditional convergence and error estimates of a Galerkin-mixed FEM with the linearized semi-implicit Euler scheme for the equations of incompressible miscible flow in porous media. We prove that the optimal L2 error estimates hold without any time-step (convergence) conditions, while all previous works require certain time-step restrictions. Our theoretical result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 40 شماره
صفحات -
تاریخ انتشار 2009